On March 26th, the ESA’s Solar Orbiter made its closest approach to the Sun so far. It ventured inside Mercury’s orbit and was about one-third the distance from Earth to the Sun. It was hot but worth it.

The Solar Orbiter’s primary mission is to understand the connection between the Sun and its heliosphere, and new images from the close approach are helping build that understanding.

According to the ESA, the Solar Orbiter is the most complex scientific laboratory ever sent to the Sun. It carries a robust suite of instruments, including a Magnetometer, an Extreme Ultraviolet Imager, a Solar Wind Plasma Analyzer, and others. Its broad range of instruments allows it to observe solar events in multiple ways.

The spacecraft benefits from getting as close to the Sun as it can. But close approaches make the Solar Orbiter hot. The spacecraft’s first line of defence is its heat shield. It’s a multi-layered titanium device mounted on a honeycomb aluminum support, with carbon fibre skins designed to shed heat. Between all that and the spacecraft’s body, there are another 28 layers of insulation. During this approach, its heat shield reached 500 Celsius (932 F.)

Protected from the heat, the Solar Orbiter gathered a lot of data in its approach. Scientists need more time to work with it and understand it, but the images and videos are immediately engaging. One of the Sun’s features that caught everyone’s attention is the “space hedgehog.”

The intriguing feature in the bottom third of the image, below the centre, has been nicknamed the solar hedgehog. No one knows exactly what it is or how it formed in the Sun’s atmosphere. The image was captured on 30 March 2022 by the Solar Orbiter’s Extreme Ultraviolet Imager. Image Credit: ESA.

Thanks to a bit of luck, the Sun put on a show during the Solar Orbiter’s approach. There were solar flares, and even a coronal mass ejection (CME) directed toward Earth. The Solar Orbiter has several remote sensing instruments, and scientists used them to forecast when the CME would reach Earth. They released their forecast on social media, and 18 hours later, Earthly observers were prepped to witness the resulting aurora. ESA released a graphic to explain how that played out.

This graphic shows the role the Solar Orbiter played in detecting a CME and forecasting aurora when the CME struck Earth. On 10 March, a solar flare produced a coronal mass ejection (CME) that was directed at Earth. The cameras on the ESA/NASA mission SOHO (Solar and Heliospheric Observer) recorded the event at around 22:06 UT. Solar Orbiter also observed it from its viewpoint about 67 million km from the Sun. <br /><Click to enlarge.> Image Credit: Central Sun image: ESA & NASA/Solar Orbiter/EUI team; corona imagery: SOHO (ESA & NASA); Solar Orbiter data: ESA & NASA/Solar Orbiter/MAG & SWA Teams; Wind data: NASA/GSFC/Wind Aurora: J Bant Sexson IV” class=”wp-image-156053″ srcset=”https://www.universetoday.com/wp-content/uploads/2022/05/Tracking_space_weather_article.jpg 960w, https://www.universetoday.com/wp-content/uploads/2022/05/Tracking_space_weather_article-580×326.jpg 580w, https://www.universetoday.com/wp-content/uploads/2022/05/Tracking_space_weather_article-250×141.jpg 250w, https://www.universetoday.com/wp-content/uploads/2022/05/Tracking_space_weather_article-768×432.jpg 768w” sizes=”(max-width: 767px) 89vw, (max-width: 1000px) 54vw, (max-width: 1071px) 543px, 580px” /><br />This graphic shows the Solar Orbiter’s role in detecting a CME and forecasting aurora when the CME struck Earth. On 10 March, a solar flare produced a coronal mass ejection (CME) directed at Earth. The cameras on the ESA/NASA mission SOHO (Solar and Heliospheric Observer) recorded the event at around 22:06 UT. Solar Orbiter also observed it from its viewpoint about 67 million km from the Sun.  Image Credit: Central Sun image: ESA & NASA/Solar Orbiter/EUI team; corona imagery: SOHO (ESA & NASA); Solar Orbiter data: ESA & NASA/Solar Orbiter/MAG & SWA Teams; Wind data: NASA/GSFC/Wind Aurora: J Bant Sexson IV</p>
<p>The following video features images of the flares and the CME from three of the Solar Orbiter’s instruments: the Extreme Ultraviolet Imager, the Metis coronagraph, and SoloHI, the Solar Orbiter Heliospheric Imager. </p>
<p>The awesome energy of the Sun can be readily appreciated in this sequence of images combining data from three instruments on the ESA/NASA Solar Orbiter spacecraft. It shows the way a solar flare on 25 March 2022, one day before the Solar Orbiter’s closest approach to the Sun, created a massive disturbance in the Sun’s outer atmosphere, the solar corona, leading to an enormous quantity of the gas being hurled into space in a coronal mass ejection.</p>
<p>The ESA created an infographic that helps explain what the<br />Did you miss our previous article… <br /><a href=https://www.mansbrand.com/some-details-to-keep-in-mind-when-planning-your-next-road-trip/

Comments

0 comments