In the early hours of the morning on Wednesday, Nov. 24th, NASA’s Double Asteroid Redirection Test (DART) launched from Space Launch Complex 4 East at Vandenberg Space Force Base (SFB) in California. This spacecraft is the world’s first full-scale mission to demonstrate technologies that could someday be used to defend our planet from Near-Earth Asteroids (NEAs) that could potentially collide with Earth.

Put simply, the DART mission is a kinetic impactor that will evaluate a proposed method for deflecting asteroids. Over the next ten months, the DART mission will autonomously navigate towards the target asteroid – the binary NEA (65803) Didymos – and intentionally collide with it. If everything goes according to plan, this will alter the asteroid’s motion so that ground-based telescopes can accurately measure any changes.

The launch took place at 01:31 AM EST (Tues. Nov. 23rd, 10:31 PM PST) when the DART mission took off from SLC-4E atop a SpaceX Falcon 9 rocket. At 02:17 AM (11:17 PM PST), DART separated from the booster’s second stage and began sending telemetry data back to missions controllers minutes later. About two hours later, the spacecraft unfurled the two 8.5-meter (28-foot) large solar arrays that will power its Solar-Electric Propulsion (SEP) thruster.

Fourteen sequential Arecibo radar images of the near-Earth asteroid (65803) Didymos and its moonlet. Credit: NASA/Arecibo

The collaborative DART effort was built and is led by the Johns Hopkins University Applied Physics Laboratory (JHUAPL). The mission is managed under NASA’s Planetary Defense Coordination Office and Planetary Science Division, with support provided by multiple NASA centers. The mission is compromised of multiple elements provided by NASA, the European Space Agency (ESA), and other partner agencies. As NASA Administrator Bill Nelson explained in a recent NASA press release:

“DART is turning science fiction into science fact and is a testament to NASA’s proactivity and innovation for the benefit of all. In addition to all the ways NASA studies our universe and our home planet, we’re also working to protect that home, and this test will help prove out one viable way to protect our planet from a hazardous asteroid should one ever be discovered that is headed toward Earth.”

“At its core, DART is a mission of preparedness, and it is also a mission of unity,” said Thomas Zurbuchen, the associate administrator for the Science Mission Directorate at NASA Headquarters. “This international collaboration involves DART, ASI’s LICIACube, and ESA’s Hera investigations and science teams, which will follow up on this groundbreaking space mission.”

The mission consists of two spacecraft, the 610 kg (1,340 lb) impactor that relies on the NEXT ion thruster, a type of solar electric propulsion that uses solar arrays to power its NASA Evolutionary Xenon Thruster–Commercial (NEXT-C) engine. The target for this mission, named for the Greek word “twin,” consists of a larger primary asteroid (65803) named Didymos, and an orbiting moonlet named Dimorphos.

Artist’s impression of the DART mission rendezvousing with the NEA Didymos. Credit: NASA/JHUAPL

Whereas (65803) Didymos measures about 780 meters (2,560 ft) in diameter, Dimorphos is less than one-quarter the size (160 m; 530 ft). This moonlet will be the primary target for DART, which will rendezvous with the system between
Did you miss our previous article…