In the coming years, NASA will be sending astronauts to the Moon for the first time since the Apollo Era. This time, and as part of the Artemis Program, NASA also plans to build the necessary infrastructure to establish a sustained human presence on the Moon and eventually missions to Mars – including the Artemis Base Camp and the orbiting Lunar Gateway.

They’ll be getting some new equipment, such as the exploration Extravehicular Mobility Unity (xEMU) spacesuit and a fancy new lunar lander. Of course, as the Artemis astronauts will also have to deal with the same hazards as their predecessors – not the least of which is lunar dust (or regolith). Luckily, NASA is investigating a possible solution in the form of a handheld electron/ultraviolet (UV) device that could mitigate this hazard.

Dr. Inseob Hahn, a program technologist and the project lead at NASA/JPL, described the device as a “Moon duster” and said it “will be like a typical duster spray on your desk, but it operates without air.” This technology could become a regular feature for future lunar missions, allowing astronauts to clean themselves off after conducting extravehicular activity (EVA) on the surface.

Sticky Problem

As the Apollo astronauts learned, much of the lunar surface is covered in a thick sheet of fine powder, which is essentially the pulverized remains of moon rocks. Over the course of billions of years, the Earth-Moon system has been bombarded with meteorites, comets, and asteroids. Whereas Earth is protected by its thick atmosphere, which causes most of these objects to burn during entry (or lost most of their mass), the Moon has no such protection.

It also doesn’t have the atmospheric and geological activity Earth does, which erases the evidence of these impacts over time. For these reasons, the Moon’s surface has always been pockmarked, cratered, and covered with tiny shards of “moon dust.” To complicate matters, the lack of an atmosphere and magnetic field means that the lunar surface is constantly exposed to charged particles emanating from the Sun (aka. solar wind).

This causes the fine-grained silica to become electrostatically charged, which combined with its jagged nature, makes it especially sticky and abrasive. For the Apollo astronauts, this dust was a constant nuisance, sticking to spacesuits, optical lenses, thermal blankets, and equipment. It caused damage to spacesuits, got into the lunar lander, and technical problems and even respiratory issues for the astronauts themselves.

It was also highly resistant to cleaning efforts, with astronauts reporting that even vigorous brushing could not remove it. Nevertheless, NASA and other space agencies need to have mitigation measures in place if future plans for lunar exploration are to be successful. This is especially true since the Artemis Program calls for the creation of a “sustainable program of lunar exploration” – in other
Did you miss our previous article…