According to the latest numbers from the ESA’s Space Debris Office (SDO), there are roughly 6,900 artificial satellites in orbit. The situation is going to become exponentially crowded in the coming years, thanks to the many telecommunications, internet, and small satellites that are expected to be launched. This creates all kinds of worries for collision risks and space debris, not to mention environmental concerns.

For this reason, engineers, designers, and satellite manufacturers are looking for ways to redesign their satellites. Enter Max Justice, a cybersecurity expert, former Marine, and “Cyber Farmer” who spent many years working in the space industry. Currently, he is working towards a new type of satellite that is made out of mycelium fibers. This tough, heat-resistant, and environmentally friendly material could trigger a revolution in the booming satellite industry.

As it stands, one of the biggest concerns with satellites is the risk of collision they pose once they become defunct. Until such time that their orbit decays and they burn up in the atmosphere, satellites are likely to collide with each other and produce small pieces of space debris. To mitigate this, and prevent the exponential rise of debris in orbit (aka. Kessler Syndrome), satellite manufacturers are investigating ways to deorbit them quicker.

However, this overlooks another hazard, which is the way satellites that re-enter our atmosphere will leave traces of aluminum particles and other toxic residues behind. These particles will float in the upper atmosphere for many years and could create another source of environmental problems. Max Justice believes that mycelium fungus could address both of these hazards when used to manufacture satellite chassis.

Basically, mycelium fibers are a protein-rich, multi-celled material extracted from the root structure of fungi that grow into macro-structures – the most well-known being mushrooms. As these structures grow, the mycelia release enzymes that convert sugars or plant waste into usable nutrients, which allows them to create extensive networks in whatever substrate they occupy – usually soil.

When dried, mycelium fibers are lightweight, extremely tough, and have tensile strength comparable to that of silk. Because of this, mycelium is one of many organic fibers that are being investigated for the sake of building materials and manufacturing. For instance, multiple designers are investigating mycelium as an inexpensive, durable, and non-toxic means for building eco-friendly housing, insulation, and plastics.

Examples include architecture and design firms Evocative and The Living, which have been using mycelium for years to create materials and finished products. In the construction industry, mycelium has also been shown to have applications for removing harmful chemicals in building waste. When paired with 3D printing, mycelium can also be used to fabricate
Did you miss our previous article…